
Essential Strategies, Inc. - 1 - Data Model Views
Copyright © Essential Strategies, Inc. (6/94)

DATA MODEL VIEWS
David C. Hay

Essential Strategies, Inc.

$%287 9,(:6 $1' 7+(&21&(378$/ 6&+(0$

This article describes a basic problem in data modeling: the lack of a method or tools for
developing “views” of data models.

A data model (specifically, an “entity/relationship” model) has two purposes: first, a
systems analyst uses it to confirm with prospective system users that he or she understands
the nature of the business involved; second, a system designer uses it as the blueprint for
the underlying structure of a new or revised system.

Data models are most often used to meet the second objective. They help data base
designers visualize data base structure, and thereby to clarify their thinking.

They often fail to meet their first objective, however when they fail to account for
different points of view of the company’s data. They are either drawn in very concrete
terms, to reflect the particular perspective of one part of the user community, or they are
drawn in more abstract, general terms, to attempt to address more general issues. In
either case, however, the views of some are not represented.

Originally, data base theory envisioned three distinct perspectives for the data in a data
base, as shown in Figure 1. First, the conceptual schema represents the structure of data
as they exist throughout an organization. The facts in the conceptual schema are true
everywhere. Second, the internal schema represents the structure of data as they are
stored physically on the computer. By extension, the internal schema also describes the
representation of the networks and hierarchies used by some data base management
systems. Finally, the external schema represents data as seen by each user.

This has proven a useful view of things, and it stimulated the development of relational
data base management systems. With a relational data base management system, you
could now describe the conceptual schema directly to the computer as a structure of tables
and columns. The software would initially create the internal schema, which could then be
manipulated independently of the conceptual one. Moreover, you could specify the
"views" individual users have of the data. The software would keep track of the
relationships between these and the conceptual schema.

Essential Strategies, Inc. - 2 - Data Model Views
Copyright © Essential Strategies, Inc. (6/94)

Figure 1: The Three-schema Approach

In practice, however, relational tools haven’t been used this way. Early relational data
base management systems were slow, even with the tools available for internal tuning, so
table structures were de-normalized and departed from the conceptual model. The design
of tables and columns became part of the internal schema design, just as the design of
networks and hierarchies were part of the internal schema design under earlier
technologies. Even though the data base management systems have gotten faster, the
practice remains.

Even where they are appropriate, SQL views often have not been used, “for performance
reasons.” Views are still often implemented with application programs — as they always
have been. Where SQL views are used, with the database no longer representing the
conceptual schema, they are now linked directly to the internal schema.

The only place where the conceptual model still exists is in the data model. The data
model is a drawing — intended to represent the business in its most fundamental sense —
showing entities as “things of significance about which an organization wishes to hold
information”.

Conceptual
Schema

Internal
Schema

External
Schema 1

External
Schema 2

External
Schema 3

Essential Strategies, Inc. - 3 - Data Model Views
Copyright © Essential Strategies, Inc. (6/94)

Data modeling itself, however, as practiced, is not immune to biases toward both the
internal and external schemata: Some analysts will draw models of an external view,
creating entities for each concrete thing seen by users, without regard for underlying
similarities and principles. Others use the data model as a database design tool, simply
reflecting the actual or intended database design structure.

A true conceptual model, on the other hand, will show only things which are fundamental
to the business, of which most of the things people see are examples.

All of this is merely another expression of the original problem. Different people in the
organization have different views of data. If a true conceptual model can be drawn, it will
not necessarily be recognizable to all in the enterprise. If the model is more concrete, in
deference to a particular department, it will reflect a particular external view, and people
in other departments may either not recognize it or disagree with it. Even the physical
database design represents but another view of the data, that is entitled to representation.

As shown in Figure 2, the three-schema architecture has gone astray.

So data modeling, our tool for developing conceptual models, has become removed from
the process of specifying and developing systems. When the data model represents the
conceptual schema, the external schemata are no longer connected to it, and they are not
available at all in data model form. And while the conceptual schema often is the starting
point for physical data base design, it is very difficult to keep the link current as
requirements change.

What we need is the ability to return to Figure 1. If the facilities to support it were
available, an analyst in early discussions with users would take advantage of data model
graphics and sentences to build the models in the users’ concrete terms. The analyst
would then translate the result into generalized, corporate conceptual models.

When the designer then maps the conceptual data model to a data base design, he or she
would map the external data models directly to SQL views and screens. In other words,
a default view design could be generated along with a default data base design.

CASE tools, as they exist today, do not support the idea of data model views. At best,
some (though by no means all) CASE tools allow the user to draw subsets of the total set
of entities and relationships. This facility can be used to selectively draw entities that
pertain to a particular part of the business. Where one can achieve a specific view by
simply selecting entities to show, this is adequate.

Essential Strategies, Inc. - 4 - Data Model Views
Copyright © Essential Strategies, Inc. (6/94)

Figure 2: Three-schema architecture in Practice

Conceptual
Schema

(Data Model)

Internal
Schema
(Files)

External
Schema 1

External
Schema 2

External
Schema 3

? ?

Internal
Schema
(Tables)

Figure 2: The Conceptual Schema Adrift

No CASE tool (in your author’s experience), however, is flexible enough to allow one to
represent a view of a data model where the relationships or entity names in the view are
different from those in the underlying model. We need such a facility — along with the
ability to document the relationships between this view and the underlying complete
model.

The following sections present some examples of situations where this view mechanism
would be useful.

(;$03/(6 2) 9,(:6

At least five situations give rise to the need for views of data models:

• Hierarchies

• Departmental views

Essential Strategies, Inc. - 5 - Data Model Views
Copyright © Essential Strategies, Inc. (6/94)

• Combining entities and relationships

• Cross-departmental views

• Meta model views

Hierarchies

First, unlike data flow diagrams, data models are not inherently hierarchical, which makes
it difficult to produce “summary” or “high level” data models. Upper management is often
unwilling to sit through presentations of excessive detail, but there is not a convenient,
standard way of showing just the most important elements.

As mentioned above, one can select entities for presentation, based on their importance to
the audience, but simply failing to include a low level entity on a diagram may not be
enough: If entities are left out of the presentation, relationship definitions themselves
change. Figure 3 shows a relationship between two high-level entities. WORK ORDER
and PERSON appear to a manager to have a simple many-to-many relationship, but at
lower levels of detail the relationship is much more complex .

WORK
ORDER

PERSON

WORK
ORDER

PERSON

TIME SHEET ENTRY

LABOR ASSIGNMENT

worked on by

involved with

for

submitter
of

forto

object of subject tocharged with

charged to

Figure 3: A Hierarchical View

Essential Strategies, Inc. - 6 - Data Model Views
Copyright © Essential Strategies, Inc. (6/94)

(It is not always easy to judge what constitutes a “most important” entity, by the way.
Some entities are clearly “high-level” or “detailed”, but the significance of others depends
on the manager looking at the model. In this article, however, we are discussing the
ability of the tools to represent views — the abilities of the analyst to represent views
intelligently is a separate issue.)

Note that this is not simply a matter of eliminating the TIME SHEET ENTRY and
LABOR ASSIGNMENT from the summary diagram in Figure 3. The relationship pair in
the summary diagram (“Each WORK ORDER may be worked on by one or more
PEOPLE”, and “Each PERSON may be involved with one or more WORK ORDERS”) is
different from those in the detailed diagram. While you could simply add the summary
relationship pair, and show or not show the line when appropriate, we currently have no
mechanism to show that these different relationships are logically equivalent.

Departmental Views

The second need for data model views comes from the fact that by building diagrams to
describe a company as a whole, we often produce models that are not in terms each
department can readily understand. Different departments may look at similar things in
completely different terms.

Regardless of the management level concerned, all people work in an environment of
concrete things: Users know about “parts”, “instruments”, “sub-assemblies”, etc. They
don’t know about the more general “items” or even (except for the accountants) “assets”
that would appear on a more enterprise-wide model. At the very least, any entity on a
model could list examples, but better yet would be to make the entity names themselves
reflect the concrete world of the user. Certainly one must portray relationships as the
department sees them.

Where different departments have different names for the same things, each should be able
to see a model with its own names on it. In Figure 4, PRODUCTION FACILITY and
MEASURING DEVICE are two broad categories of hardware (ITEM TYPE) in a plant.
Individual departments, however, deal with subsets of these things. The maintenance
department deals with PIECES OF EQUIPMENT, the LABORATORY deals with
INSTRUMENTS, and the process control department deals with TAGS.

Essential Strategies, Inc. - 7 - Data Model Views
Copyright © Essential Strategies, Inc. (6/94)

ITEM TYPE

PRODUCTION
FACILITY

MEASURING
DEVICE

PIECE OF
EQUIPMENT

INSTRUMENT

TAG

(Maintenance)

(Laboratory)

(Process Control)

Figure 4: Item Types

What is needed here is the ability to specify that a particular department’s entities and
relationships exist — showing these in a data model — and to specify also the links
between these and a conceptual model whose entities and relationships may look quite
different. The view entities and relationships are manipulated in exactly the same way as
real entities, but the data dictionary understands how they are different.

Another example is shown in Figure 5: A maintenance engineer may view a "ROTATING
PART" as an entity of significance. In the conceptual model, this is simply another kind of
EQUIPMENT. A data model view language would permit definition of the following:

ROTATING PART <= “EQUIPMENT,
(each of which must be of EQUIPMENT TYPE)
WHERE
EQUIPMENT TYPE.DESCRIPTION
= ‘Rotating part’” ;

Essential Strategies, Inc. - 8 - Data Model Views
Copyright © Essential Strategies, Inc. (6/94)

ROTATING
PART

EQUIPMENT

EQUIPMENT
TYPE

(e.g., "Rotating Part")

of

the definition of

Figure 5: A Departmental View

Relationships change as well in different views. For example, the departmental model may
show that a PRODUCT is of one and only one PRODUCT TYPE, but from the point of

view of the company, a PRODUCT may be of one or more PRODUCT TYPES.

PRODUCT

PRODUCT TYPE

PRODUCT
CLASSIFICATION

PRODUCT

PRODUCT TYPE

of

into

of

classification for

object of

subject to

Figure 6: Another Departmental View

Essential Strategies, Inc. - 9 - Data Model Views
Copyright © Essential Strategies, Inc. (6/94)

The mechanism for keeping these two views synchronized is what we seek here. (See
Figure 6.)

In both these cases, simply hiding entities is not sufficient. Relationships are different
between the views.

buyer in

seller in

from

to

PARTY

CONTRACT

VENDORPURCHASE
ORDER

to

for

ORGANIZATION

PERSON

Figure 7: An entity Plus a Relationship

Combining Entities and Relationships

The third area where views of data models would be useful is the practice of
incorporating a thing's relationships into the definition of the thing itself. This is a practice
that conceptual data modelling tries to stamp out, but that audiences insist on doing.

The most common example of this is the entity VENDOR, which modelling purists know
is only a PARTY (a PERSON or an ORGANIZATION) which is a seller in a
CONTRACT. (See Figure 7.) That is, the word “vendor” contains within its definition
not only the thing itself (a person or organization), but its relationship with other things.

Many people are more comfortable, however, with the use of VENDOR and
CUSTOMER entities (probably because this is the way we have always built purchasing
and sales systems), even though the underlying entities (PERSON and ORGANIZATION)

Essential Strategies, Inc. - 10 - Data Model Views
Copyright © Essential Strategies, Inc. (6/94)

are the same, whether they are buying or selling. In the interest of harmony, it should be
possible to portray the more familiar entities.

Again, a view syntax would allow us to say:

VENDOR <= PARTY
WHERE
PARTY is “seller in” one or more CONTRACTS;

Cross-departmental Views

A fourth area where data modelling views would be useful concerns entities that relate to
many or all aspects of the business, in a way that redefines local entities. An accounting
transaction, for example treats quite different entities (such as DEPARTMENT, or
ASSET) as "cost centers". (See Figure 8.)

In some cases a COST CENTER may be an EXPENSE ACCOUNT for a particular
DEPARTMENT and ASSET, or it may just be the set of all expense accounts for a
DEPARTMENT. The model could be drawn so that each COST CENTER must be for
either one EXPENSE ACCOUNT, or for one DEPARTMENT, but that belies the fact
that people who are concerned with COST CENTERS don’t want to know about
EXPENSE ACCOUNTS, and vice versa.

ASSET

WORK
ORDER

PURCHASE
ORDER

EXPENSE
ACCOUNT

. Cost
center

DEPART-
MENT

. Cost
center

WORK
ORDER

PURCHASE
ORDER

COST CENTER

charged to

charged
with

charged to

charged

with

owned by

responsible for

for

paid for via

charged to

charged withcharged with

charged to

Figure 8: Cross-company Views

In another example, labor and parts usage charged to a work order require complex
models in their own right to describe accurately all the relevant relationships specific to
each. But to a project manager, they are simply "resources".

Essential Strategies, Inc. - 11 - Data Model Views
Copyright © Essential Strategies, Inc. (6/94)

Meta Model Views

The real world is not, in fact, relational. Situations arise where different occurrences of an
entity have different attributes, depending on the category of the occurrence. This could
be handled by the use of sub-types, except in those cases which are very dynamic, with
categories being added and deleted frequently. An example is PRODUCT, where the
attributes of a fruit are quite different from the attributes of a computer.

The solution to this problem is shown in Figure 9. This model defines attributes for each
ITEM TYPE, via one or more ATTRIBUTE ASSIGNMENTS. Each ATTRIBUTE
ASSIGNMENT is of one ATTRIBUTE to an ITEM TYPE. A VALUE of the
ATTRIBUTE can then be defined for an ITEM of that ITEM TYPE.

for

evaluated
by

class'n

of

for

to

described
by given

of

ITEM

ATTRIBUTE

VALUE

of

evaluated
at

ITEM

ITEM TYPE

of

classification for

(Column structure
determined by

the item type)

ATTRIBUTE ASSIGNMENT

ITEM TYPE

Figure 9: A meta model of a variable-length table

This model is too abstract for many audiences, however. Many people only want to know
that an ITEM is of one and only one ITEM TYPE, and that the format of a particular
ITEM will depend on its ITEM TYPE. The intricacies of the model that accomplishes this
in a relational environment are of no interest. A CASE tool could present this, even
though the dictionary contains the more complex underlying model.

Essential Strategies, Inc. - 12 - Data Model Views
Copyright © Essential Strategies, Inc. (6/94)

Nothing in the existing tools prevents us from drawing meta-models such as this one.
What is missing, however, is the ability to link this model to one that shows ITEM the way
everyone sees it -- as a single entity with variable length rows.

5(&200(1'$7,216

In each of these cases, a systematic way of presenting these views of data would
significantly increase data modelling's power as a tool for managing data base design.

CASE tools should officially recognize the concept of “view” and have a language for
describing one, as presented here. Among other things, this would involve:

1. Separating drawings from their underlying model. This would allow a user
to select which entities and relationships would appear in a particular
drawing. This is a basic requirement which some CASE tools allow for
now.

2. Making it possible to select the synonym to be displayed as the name of an
entity in a particular drawing.

3. Making it possible to define a “virtual entity” whose definition is derived
from other entities and relationships.

4. Making it possible to define a “virtual relationship” in terms of (or as a
synonym for) one or more other relationships and, taking into account any
intermediate entities.

5. Documenting the links between virtual and real entities and relationships,
and manipulating them in reports and selection criteria. (“Show me the
details behind this relationship...”) It would be a nice touch (although not
necessary) also to indicate such a virtual object on the drawing. For
example a “(v)” could be placed next to the object name.

6. Making it possible to show a sub-type entity without having to show its
super-type. Indeed, different applications should be allowed to own
different sub-types.

These are only the most obvious requirements. Clearly the full implications of this idea
have yet to be explored. Your author would welcome comments from anyone who has
struggled with this problem and has further ideas on how to address it.

$%287 7+($87+25

David Hay is the President of Essential Strategies, Inc., a management consulting firm
specializing in Computer-aided Systems and Information Engineering. He has over twenty

Essential Strategies, Inc. - 13 - Data Model Views
Copyright © Essential Strategies, Inc. (6/94)

years experience in information management, specializing in the design, development and
implementation of interactive database applications, primarily in manufacturing. For the
last six years, he has been a CASE consultant. He has done strategic information planning
using data modeling and other modeling techniques in a wide range of industries,
including, among others, news gathering, clinical research, oil refining, and land
management.

